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Motivation and Objective

» Distributed spatial data (e.g.,
geo-spatial data) is massive.

» Approximate analysis is fast and
often effective for this data.

» Integrating multiple data sources
IS a key requirement.

» Objective: Mergeable and
Interactive data summaries.

Architecture of STORM
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Figure: The STORM system overview.
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Figure: The STORM engine architecture.

Importing Data into STORM

A user can import their own spatio-temporal data set into STORM,
allowing custom analytics of user data.

WWW.eStorm.org

Sampler and ST-Indexing
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The sampler is a
spatio-temporal database
which return samples of the
data within a query region.
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Figure: Dot density with few samples.
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Figure: Dot density with many samples.
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Figure: Salt Lake City KDE
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Figure: USA KDE

Twitter User Trajectory Analysis
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Performance Considerations
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Figure: query efficiency: vary k

STORM can analyze the

approximate trajectory of
data. From the trajectory
we can infer where to
user lives, works, and
attends school.

Short-text
understanding
estimator after a
highly anomalous
heavy snow storm
in Atlanta..
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Figure: query accuracy calculating avg

altitude of a dataset.
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