
CIF21 DIBBs: Ubiquitous Access to Transient Data and Preliminary Results via the SeedMe Platform
Award Number : 1443083
PI: Amit Chourasia, Co-PI: Michael Norman
San Diego Supercomputer Center, University of California San Diego

Open source
Web based

Cross-platform

✓
✓
✓

SeedMe = Stream Encode Explore and Disseminate My
Experiments
SeedMe is a platform that enables easy sharing of transient and
preliminary data for a broad research computing community
by offering cyberinfrastructure as a service and a modular
software stack that may be customized. SeedMe is based on
Drupal content management system with a set of building
blocks with additional PHP modules and web services clients.

Research computing is highly
collaborative, distributed and
often uses disparate compute
resources. Currently available
tools do not meet sharing and
collaborative needs that must
collocate data, description and
discussion (3D) and additionally
handle transfer, storage and access
control. Furthermore, these tools
must be cross platform and readily
pluggable for automation with
existing scientific workflows.

As a cloud service
 ▪ dibbs.seedme.org
▪ www.seedme.org

DIY - Run own instance
▪ On your own

hardware
▪ Condo hardware

Provider run instances
▪ At your institution
▪ At national centers
▪ At public cloud

No lock in

SeedMe server Desktop host

User apps

Apache, Drupal 8, & Database Browser

Post & query
APIs

Command-line
Post & query

APIs

Visualization
APIs

HPC host

Command-line
Post & query

APIs

UI tools
Post & query

APIs

Mobile host

Apps

Browser

Post & query
APIs

Visualization
APIsFederated login

CI Logon

Access control

Storage

Small data
APIs

Visualization

Content management

Virtual file system Data sharing Collaboration

Seedme APIs

Seedme Drupal 8 modulesSeedme tools & apps

Third party software

Computing researchers
 ▪ Collaboration hub
 ▪ Personal dashboard

Developers
 Integrate with scientific

applications

Project repositories

Gateways
 Service for data

sharing, data
publishing, data
escrow

CI providers: Offer the
platform to your user
base

Sharing Search / Index Microformats

Federated authentication
+ Authorization Virtual File Sytem Access Control

Field Formatters REST API Clients (Java, Python)
+ Command Line

Light Visualization Rich Text Discussion

• Cross-platform tools, APIs, and Drupal modules
• Post & query data from HPC jobs, workflows, apps, browsers, and command line
• Cloud file system for secure data sharing and collaboration
• Integrated lightweight visualization tools for quick analysis
• Secure access, sharing, and access controls

Acknowledgements: This work is supported by the National Science Foundation under Grant No.
ACI-1443083. "Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the NSF."

Planned building blocks

What is SeedMe? Why build a platform? For whom? Use how?

Small Data API

Federated authentication Virtual File Sytem

Small Data Visualization

Significant results

Pilot project with 580+ registered users
120,000+ content items

Integration with four scientific tools
Early demonstration prototype

 ✓ Available

✓
✓ ✓

✓ ✓

Home / Projects / Benchmarking OpenGL performance for mesh visualization / View

OpenGL mesh memory use

Benchmark: OpenGLTest
Run dates: July-August 2015

Table of contents
Description
Observations
Conclusions
Files

Description
The OpenGLTest benchmark measures mesh memory use for each of four mesh types and several rendering styles for each type:

Point cloud varying point size - a point is drawn at each cell, while point color and size vary with the cell value.

Point cloud varying point opacity - a point is drawn at each cell, while point color and opacity vary with the cell value.

Polygon layers varying color - a grid of polygons are drawn for each vertical layer in the mesh, varying color and opacity with cell values.

Polygon layers varying texture - a grid of polygons are drawn for each vertical layer in the mesh, varying opacity and texture coordinates for a
texture image with color varying by cell values.

Polygon faces varying color - each face of each cell in the mesh is drawn, varying color and opacity with cell values.

Polygon faces varying texture - each face of each cell in the mesh is drawn, varying opacity and texture coordinates for a texture image with color
varying by cell values.

The benchmark builds meshes of increasing size, starting at 512 cells and growing by powers of two. For each mesh size, the memory required for
each of the four mesh types and various rendering styles is measured and plotted.

Observations
As expected, different rendering styles have different memory requirements. A style that draws a polygon for every cell face, for instance, requires
much more memory than one that only draws a point for every cell. Texture mapping for regular meshes with planar layers replaces a lot of color
values for cell vertices with a smaller set of texture coordinates, reducing memory use. However, texture mapping for the other mesh types has no
benefits since it just replaces color values with equivalent texture coordinate values at every coordinate, making mesh memory use the same.

Conclusions
All scene data must be built and stored on the host, then transferred in pieces to the GPU for rendering. The maximum scene size is limited by the
amount of host physical memory, not by the GPU. Different types of meshes and different rendering styles for those meshes has a substantial impact
on the amount of memory required to create and fill vertex buffers to draw the meshes.

Name Changed Size
Data Fri, 09/09/2016 - 14:09 --

Images Fri, 09/09/2016 - 14:05 --

Virtual file system: Sample UI
Path
hierarchy
breadcrumbs

Folder
description
with rich text
and metadata

File/data
browser

REST services

Light visualizations

BarsBenchmark of revised image preprocessing times.json (795 bytes)

Example - Image preprocessing times for images using multithreaded C++

File format: JSON
Schema: json-table
Table rows: 1
Table columns: 5

Benchmark times for image classification preprocessing using C++

The table lists benchmarked wall-clock execution times for separate runs of the optimized C++ implementation of image preprocessing for
seafloor image classification. Specific timed tasks include (1) image load from JPEG files, (2) image enhance and color correct, (3) calculation
of image red, green, and blue histograms, and (4) calculation of a grayscale image and DCT coefficients. All benchmarks run on a 6-core 3.33
GHz Intel processor with 12 Gbytes of DDR3 memory.

Load Enhance Histogram DCT

0.00 0.04 0.08 0.12 0.16

Run…

Run

Va
lu
e

Area (stacked)OpenGL mesh memory use.csv (1296 bytes)

Example - OpenGL mesh memory use as mesh sizes scale up

File format: CSV
Schema: table
Table rows: 20
Table columns: 7

Point cloud - vary size Point cloud - vary opacity Polygon layers - vertex colors 1/2

50,000,000 100,000,000 150,000,000 200,000,000 250,000,000
0

300

600

900

1,…

points

V
al

ue

Area (stacked)Benchmark of original Matlab image preprocessing times.json (1859 bytes)

Example - Image preprocessing times for images using Matlab

File format: JSON
Schema: json-table
Table rows: 10
Table columns: 5

Benchmark times for image classification preprocessing using Matlab

The table lists benchmarked wall-clock execution times for separate runs of the original Matlab implementation of image preprocessing for
seafloor image classification. Specific timed tasks include (1) image load from JPEG files, (2) image enhance and color correct, (3) calculation of
image red, green, and blue histograms, (4) calculation of a grayscale image and DCT coefficients, and (5) image save for the enhanced image. All
benchmarks run on a 6-core 3.33 GHz Intel processor with 12 Gbytes of DDR3 memory.

Load Enhance Histogram DCT Save

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10
0

20

40

60

80

Run

V
al
ue

Organization chart

Image classification work breakdown schedule.json (1211 bytes)

Example - Image classification work breakdown
schedule

File format: JSON
Schema: json-tree
Tree nodes: 12

Image classification work breakdown schedule

Image

classification
project

Design data

schema

Assemble of
image

classification
library

Develop
core

image
software

Survey
metadata
schema

Design
classification

metadata
schema

Design
feature
vector

schema

Build
initial
library

Expand
library

with new
field work

 Build image
management

Build
baseline

k-d
search

tree

Translate
Matlab
code to

new
library

This is a two-year project. The bulk of the project's development schedule is an
iterative process of impolementing new methods to improve image classification
performance, followed by testing and validation of those methods. The project
finishes with broad testing of all of the methods developed and characterization of
their performance and classification accuracy.

Website: https://dibbs.seedme.org

Project information

