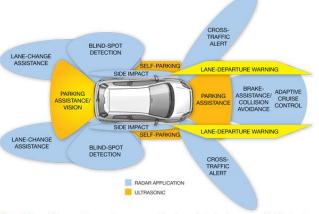


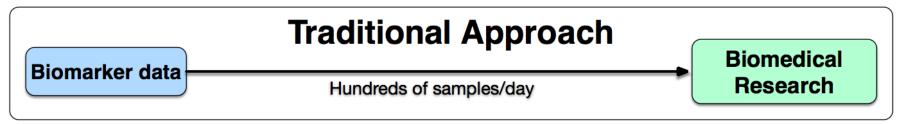
Cornell Tech ♦ Georgia Tech ♦ U. Memphis ♦ Northwestern ♦ Ohio State ♦ Open mHealth ♦
Rice ♦ UCLA ♦ UC San Diego ♦ UC San Francisco ♦ UMass Amherst ♦ U. Michigan

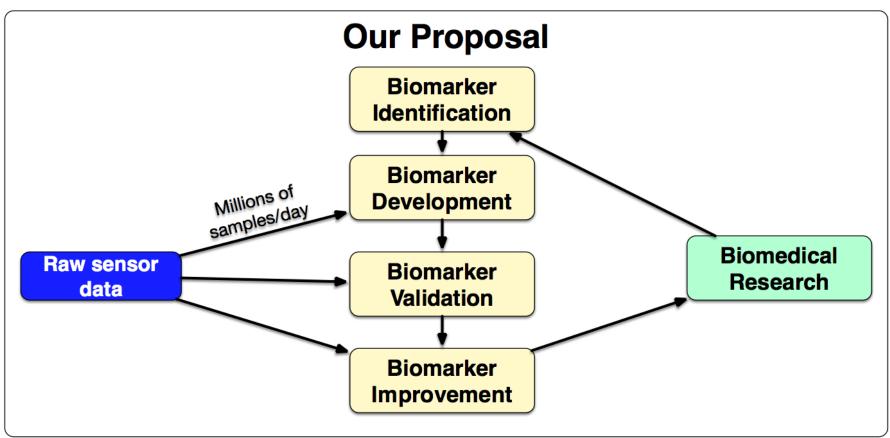
Provenance-based Data Analytics CI for High-frequency Mobile Sensor Data (mProv)

Emre Ertin (Ohio State), Zach Ives (UPenn), Santosh Kumar (Memphis), Jim Rehg (Georgia Tech), Ida Sim (UCSF), Mani Srivastava (UCLA)

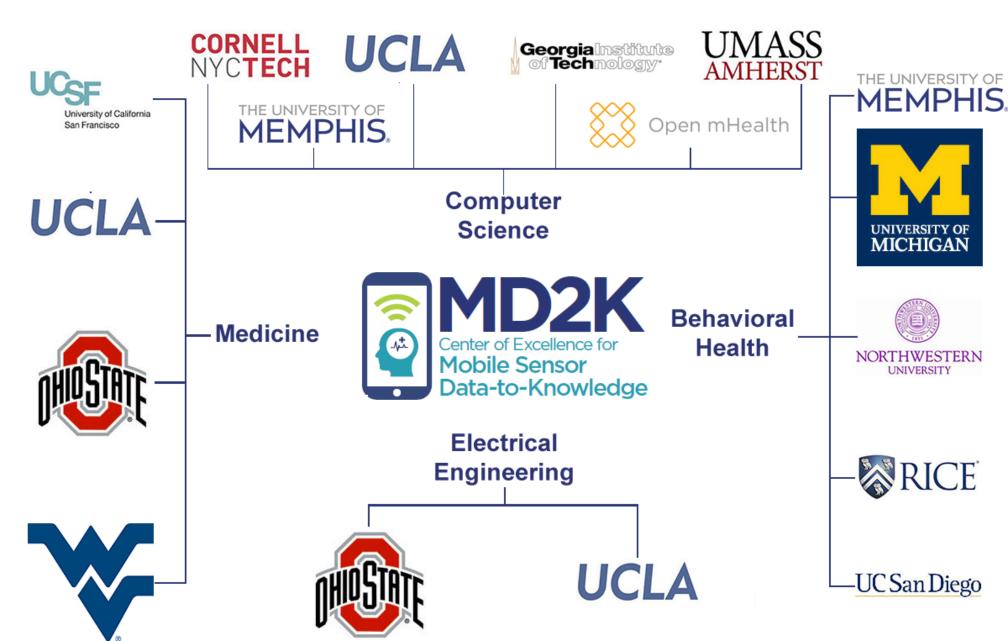
Growing Potential of High-Frequency Mobile Sensor Data



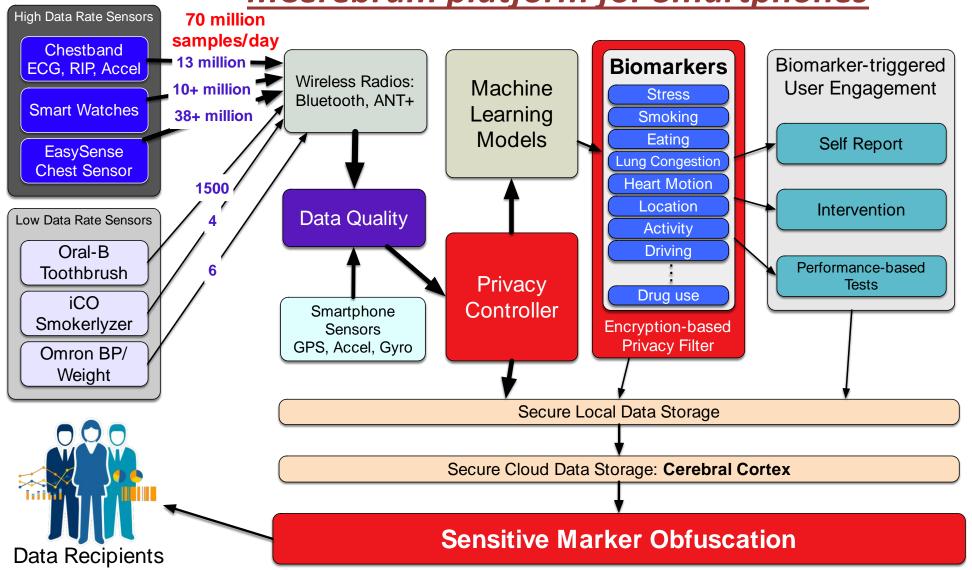



Figure 2 Several driver-assistance systems are currently using radar technology to provide blind-spot detection, parking assistance, collision avoidance, and other driver aids (courtesy Analog Devices).

Health applications are a natural focal point for research using sensor data



Enabling mHealth Data Science Research



MD2K Mobile Software Platform (open-source)

mCerebrum platform for Smartphones

User Studies Using MD2K Software

Study	Target	Participants	Length (days)	Participant- days	Expected samples
Northwestern	Smoking, Stress	210	14	2,940	203 billion
Ohio State	CHF	225	30	6,750	437 billion
UCLA	Oral health	157	180	22,595	878 billion
Vermont	Smoking	90	14	1,260	87 billion
Rice	Smoking	300	30	9,000	622 billion
Utah	Smoking	300	30	9,000	622 billion
Johns Hopkins	Cocaine	25	7	175	11 billion
Totals		1,307	-	51,720	2.86 trillion (~150TB)

Barriers in Conducting Research with High-frequency Mobile Sensor Data

Due to lack of data sharing, everyone needs to collect their own data

Sharing of raw mobile sensor data can accelerate research, but provenance infrastructure is needed to enable reproducibility and comparative analysis

Velocity

Hundreds of samples/sec per sensor

Variety

Tens of sensors per sensor

Volume

Gigabytes per day per person

Variability

Variations in attachment, placement, signal quality

Veracity

Multiple biomarkers from same sensor

Validation

Sources of validation for specific biomarkers

mProv: Provenance CI for High-frequency Mobile Sensor Data

- mProv is developing data models, metadata standards, API's, and runtime support for annotating sensor data streams with
 - Source sensor type, placement, sampling rate, continuous/episodic
 - Semantics number, probability, class/category;
 - Provenance features and rules applied to obtain a biomarker;
 - Validation specificity, sensitivity, benchmark, gold standard;
 - Privacy user controls exercised and applicable privacy policies
- mProv will enable replay, interpretability, comparative analysis, and reproducibility

The mProv Team

Scientific Leadership	Santosh Kumar (PI, U Memphis, analytics); Zachary Ives (Co-PI, U Penn, provenance); Ida Sim (Co-PI, UCSF, metadata); Mani Srivastava (Co-PI, UCLA, privacy)		
Scientific Consultants	Emre Ertin (<i>Ohio State</i> , sensor quality); <i>Open mHealth</i> (API integration); James M. Rehg (<i>GA Tech</i> , sensor data analytics)		
Advisory Panelists	CISE Advisory Panel: Tanzeem Choudhury (Cornell); Vasant Honavar (Penn State); David Kotz (Dartmouth); Health Advisory Panel: Brian Bot (Sage Bionetworks); Nick Anderson (UC Davis); Industry Advisory Panel: Joe Corkery (Google); Mike O'Reilly (Apple)		
Collaborators	Madeleine Ball (Open Humans Project, Participant Recruitment); Gary Wolf (Quantified Self, Participant Recruitment)		

